
Mathematical Foundations for a
Compositional Distributional Model of Meaning

Bob Coecke∗, Mehrnoosh Sadrzadeh∗, Stephen Clark†

coecke, mehrs@comlab.ox.ac.uk – stephen.clark@cl.cam.ac.uk

∗Oxford University Computing Laboratory
†University of Cambridge Computer Laboratory

Abstract

We propose a mathematical framework for a unification of the distribu-
tional theory of meaning in terms of vector space models, and a compo-
sitional theory for grammatical types, for which we rely on the algebra of
Pregroups, introduced by Lambek. This mathematical framework enables us
to compute the meaning of a well-typed sentence from the meanings of its
constituents. Concretely, the type reductions of Pregroups are ‘lifted’ to mor-
phisms in a category, a procedure that transforms meanings of constituents
into a meaning of the (well-typed) whole. Importantly, meanings of whole
sentences live in a single space, independent of the grammatical structure
of the sentence. Hence the inner-product can be used to compare meanings
of arbitrary sentences, as it is for comparing the meanings of words in the
distributional model. The mathematical structure we employ admits a purely
diagrammatic calculus which exposes how the information flows between the
words in a sentence in order to make up the meaning of the whole sentence. A
variation of our ‘categorical model’ which involves constraining the scalars
of the vector spaces to the semiring of Booleans results in a Montague-style
Boolean-valued semantics.

1 Introduction

The symbolic [13] and distributional [36] theories of meaning are somewhat or-
thogonal with competing pros and cons: the former is compositional but only qual-
itative, the latter is non-compositional but quantitative. For a discussion of these
two competing paradigms in Natural Languge Processing see [15]. Following [39]
in the context of Cognitive Science, where a similar problem exists between the

1

ar
X

iv
:1

00
3.

43
94

v1
 [

cs
.C

L
]

 2
3

M
ar

 2
01

0

connectionist and symbolic models of mind, [6] argued for the use of the tensor
product of vector spaces and pairing the vectors of meaning with their roles. In this
paper we will also use tensor spaces and pair vectors with their grammatical types,
but in a way which overcomes some of the shortcomings of [6]. One shortcoming
is that, since inner-products can only be computed between vectors which live in
the same space, sentences can only be compared if they have the same grammatical
structure. In this paper we provide a procedure to compute the meaning of any sen-
tence as a vector within a single space. A second problem is the lack of a method
to compute the vectors representing the grammatical type; the procedure presented
here does not require such vectors.

The use of Pregroups for analysing the structure of natural languages is a recent
development by Lambek [19] and builds on his original Lambek (or Syntactic)
calculus [18], where types are used to analyze the syntax of natural languages in
a simple equational algebraic setting. Pregroups have been used to analyze the
syntax of a range of different languages, from English and French to Polish and
Persian [32], and many more; for more references see [23, 21].

But what is particularly interesting about Pregroups, and motivates their use
here, is that they share a common structure with vector spaces and tensor prod-
ucts, when passing to a category-theoretic perspective. Both the category of vector
spaces, linear maps and the tensor product, as well as pregoups, are examples of so-
called compact closed categories. Concretely, Pregroups are posetal instances of
the categorical logic of vector spaces, where juxtaposition of types corresponds to
the monoidal tensor of the monoidal category. The mathematical structure within
which we compute the meaning of sentences will be a compact closed category
which combines the two above. The meanings of words are vectors in vector
spaces, their grammatical roles are types in a Pregroup, and tensor product of vec-
tor spaces paired with the Pregroup composition is used for the composition of
(meaning, type) pairs.

Type-checking is now an essential fragment of the overall categorical logic,
and the reduction scheme to verify grammatical correctness of sentences will not
only provide a statement on the well-typedness of a sentence, but will also assign
a vector in a vector space to each sentence. Hence we obtain a theory with both
Pregroup analysis and vector space models as constituents, but which is inherently
compositional and assigns a meaning to a sentence given the meanings of its words.
The vectors−→s representing the meanings of sentences all live in the same meaning
space S. Hence we can compare the meanings of any two sentences −→s ,−→t ∈ S by
computing their inner-product 〈−→s |−→t 〉.

Compact closed categories admit a beautiful purely diagrammatic calculus that
simplifies the meaning computations to a great extent. They also provide reduc-
tion diagrams for typing sentences; these allow for a high level comparison of the

2

grammatical patterns of sentences in different languages [33]. This diagrammatic
structure, for the case of vector spaces, was recently exploited by Abramsky and
the second author to expose the flows of information withing quantum information
protocols [1, 7, 9]. Here, they will expose the flow of information between the
words that make up a sentence, in order to produce the meaning of the whole sen-
tence. Note that the connection between linguistics and physics was also identified
by Lambek himself [22].

Interestingly, a Montague-style Boolean-valued semantics emerges as a sim-
plified variant of our setting, by restricting the vectors to range over B = {0, 1},
where sentences are simply true or false. Theoretically, this is nothing but the pas-
sage from the category of vector spaces to the category of relations as described
in [8]. In the same spirit, one can look at vectors ranging over N or Q and obtain
degrees or probabilities of meaning. As a final remark, in this paper we only set
up our general mathematical framework and leave a practical implementation for
future work.

2 Two ‘camps’ within computational linguistics

We briefly present the two domains of Computational Linguistics which provide
the linguistic background for this paper, and refer the reader to the literature for
more details.

2.1 Vector space models of meaning

The key idea behind vector space models of meaning [36] can be summed up by
Firth’s oft-quoted dictum that “you shall know a word by the company it keeps”.
The basic idea is that the meaning of a word can be determined by the words
which appear in its contexts, where context can be a simple n-word window, or
the argument slots of grammatical relations, such as the direct object of the verb
eat. Intuitively, cat and dog have similar meanings (in some sense) because cats
and dogs sleep, run, walk; cats and dogs can be bought, cleaned, stroked; cats and
dogs can be small, big, furry. This intuition is reflected in text because cat and dog
appear as the subject of sleep, run, walk; as the direct object of bought, cleaned,
stroked; and as the modifiee of small, big, furry.

Meanings of words can be represented as vectors in a high-dimensional “mean-
ing space”, in which the orthogonal basis vectors are represented by context words.
To give a simple example, if the basis vectors correspond to eat, sleep, and run, and
the word dog has eat in its context 6 times (in some text), sleep 5 times, and run

3

7 times, then the vector for dog in this space is (6,5,7).1 The advantage of repre-
senting meanings in this way is that the vector space gives us a notion of distance
between words, so that the inner product (or some other measure) can be used to
determine how close in meaning one word is to another. Computational models
along these lines have been built using large vector spaces (tens of thousands of
context words/basis vectors) and large bodies of text (up to a billion words in some
experiments). Experiments in constructing thesauri using these methods have been
relatively successful. For example, the top 10 most similar nouns to introduc-
tion, according to the system of [11], are launch, implementation, advent, addition,
adoption, arrival, absence, inclusion, creation.

The other main approach to representing lexical semantics is through an ontol-
ogy or semantic network, typically manually created by lexicographers or domain
experts. The advantages of vector-based representations over hand-built ontologies
are that:

• they are created objectively and automatically from text;

• they allow the representation of gradations of meaning;

• they relate well to experimental evidence indicating that the human cognitive
system is sensitive to distributional information [34, 40].

Vector-based models of word meaning have been fruitfully applied to many
language processing tasks. Examples include lexicon acquisition [16, 26], word
sense discrimination and disambiguation [36, 28], text segmentation [5], language
modelling [2], and notably document retrieval [35]. Within cognitive science,
vector-based models have been successful in simulating a wide variety of semantic
processing tasks ranging from semantic priming [27, 24, 29] to episodic memory
[17], and text comprehension [24, 14, 25]. Moreover, the cosine similarities ob-
tained within vector-based models have been shown to substantially correlate with
human similarity judgements [29] and word association norms [12, 17].

2.2 Algebra of Pregroups as a type-categorial logic

We provide a brief overview of the algebra of Pregroups from the existing literature
and refer the reader for more details to [19, 20, 21, 4].

A partially ordered monoid (P,≤, ·, 1) is a partially ordered set, equipped with
a monoid multiplication − · − with unit 1, where for p, q, r ∈ P , if p ≤ q then we
have r · p ≤ r · q and p · r ≤ q · r. A Pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially

1In practice the counts are typically weighted in some way to reflect how informative the contex-
tual element is with respect to the meaning of the target word.

4

ordered monoid whose each element p ∈ P has a left adjoint pl and a right adjoint
pr, i.e. the following hold:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p .

Some properties of interest in a Pregroup are:

• Adjoints are unique.

• Adjoints are order reversing: p ≤ q =⇒ qr ≤ pr and ql ≤ pl.

• The unit is self adjoint: 1l = 1 = 1r.

• Multiplication is self adjoint:(p · q)r = qr · pr and (p · q)l = ql · pl.

• Opposite adjoints annihilate each other: (pl)r = p = (pr)l.

• Same adjoints iterate: pllpl ≤1≤ prprr, plllpll ≤1≤ prrprrr,

An example of a Pregorup from arithmetic is the set of all monotone unbounded
maps on integers f : Z→ Z. In this Pregroup, function composition is the monoid
multiplication and the identity map is its unit, the underlying order on integers lifts
to an order on the maps whose Galois adjoints are their Pregroup adjoints, defined:

f l(x) = min{y ∈ Z | x ≤ f(y)} f r(x) = max{y ∈ Z | f(y) ≤ x}

Recall that a Lambek Calculus (P,≤, ·, 1, /, \) is also a partially ordered monoid,
but there it is the monoid multiplication that has a right − \ − and a left −/−
adjoint. Roughly speaking, the passage from Lambek Calculus to Pregroups can be
thought of as replacing the two adjoints of the monoid multiplication with the two
adjoints of the elements. One can define a translation between a Lambek Calculus
and a Pregroup by sending (p\q) to (pr ·q) and (p/q) to (p ·ql), and via the lambda
calculus correspondence of the former think of the adjoint types of a Pregroup as
function arguments.

Pregroups formalize grammar of natural languages in the same way as type-
categorial logics do. One starts by fixing a set of basic grammatical roles and a
partial ordering between them, then freely generating a Pregroup of these types,
the existence of which have been proved. In this paper, we present two examples
from English: positive and negative transitive sentences2, for which we fix the
following basic types:

2By a negative sentence we mean one with a negation operator, such as not, and a positive sen-
tence one without a negation operator.

5

n: noun s: declarative statement
j: infinitive of the verb σ: glueing type

Compound types are formed from these by taking adjoints and juxtaposition. A
type (basic or compound) is assigned to each word of the dictionary. We define that
if the juxtaposition of the types of the words within a sentence reduces to the basic
type s, then the sentence is grammatical. It has been shown that this procedure
is decidable. In what follows we use an arrow → for ≤ and drop the · between
juxtaposed types. The example sentence “John likes Mary”, has the following type
assignment3:

John likes Mary
n (nrsnl) n

and it is grammatical because of the following reduction:

n(nrsnl)n→ 1snln→ 1s1→ s

Reductions are depicted diagrammatically, that of the above is:

n nr s nl n

Reduction diagrams depict the grammatical structure of sentences in one dimen-
sion, as opposed to the two dimensional trees of type-categorial logics. This feature
becomes useful in applications such as comparing the grammatical patterns of dif-
ferent languages; for some examples see [33].

We type the negation of the above sentence as follows:

John does not like Mary
n (nrsjlσ) (σrjjlσ) (σrjnl) n

which is grammatical because of the following reduction:

n (nrsjlσ) (σrjjlσ) (σrjnl)n→ s

depicted diagrammatically as follows:
n nrs jlσ σrjjlσ σrjnl n

3The brackets are only for the purpose of clarity of exposition and are not part of the mathematical
presentation.

6

The types used here for “does” and “not” are not the original ones, e.g. as
suggested in [21], but are rather obtainable from the procedure later introduced
in [30]. The difference between the two is in the use of the glueing types; once
these are deleted from the above, the original types are retrieved. The motivation
behind introducing these glueing types is their crucial role in the development of a
discourse semantics for Pregroups [30]. Our motivation, as will be demonstrated
in section 4, is that these allow for the information to flow and be acted upon in
the sentence and as such assist in constructing the meaning of the whole sentence.
Interestingly, we have come to realize that these new types can also be obtained
by translating into the Pregroup notation the types of the same words from a type-
categorial logic approach, up to the replacement of the intermediate n’s with σ’s.

3 Modeling a language in a concrete category

Our mathematical model of language will be category-theoretic. Category theory is
usually not conceived as the most evident part of mathematics, so let us briefly state
why this passage is essential. The reader may consult the category theory tutorial
[10] which covers the background on the kinds of categories that are relevant here.
Also the survey of graphical languages for monoidal categories [38] could be useful
– note that Selinger refers to ‘non-commutative’ compact closed categories as (both
left and right) planar autonomous categories. So why do we use categories?

1. The passage from {true, false}-valuations (as in Montague semantics) to
quantitative meaning spaces requires a mathematical structure that can store
this additional information, but which at the same time retains the composi-
tional structure. Concrete monoidal categories do exactly that:

• the axiomatic structure, in particular the monoidal tensor, captures com-
positionality;

• the concrete objects and corresponding morphisms enable the encoding
of the particular model of meaning one uses, here vector spaces.

2. The structural morphisms of the particular categories that we consider, com-
pact closed categories, will be the basic building blocks to construct the mor-
phisms that represent the ‘from-meaning-of-words-to-meaning-of-a-sentence’-
process.

3. Even in a purely syntactic setting, the lifting to categories will allow us to
reason about the grammatical structures of different sentences as first class
citizens of the formalism. This will enable us to provide more than just

7

a yes-no answer about the grammatical structure of a phrase, i.e. if it is
grammatical or not. As such, the categorical setting will, for instance, allow
us to distinguish and reason about ambiguities in grammatical sentences,
where their different grammatical structures gives rise to different meaning
interpretations.

We first briefly recall the basic notions of the theory of monoidal categories, be-
fore explaining in more detail what we mean by this ‘from-meaning-of-words-to-
meaning-of-a-sentence’-process.

3.1 Monoidal categories

Here we consider the non-symmetric case of a compact closed category, non-
degenerate Pregroups being examples of essentially non-commutative compact closed
categories. The formal definition of monoidal categories is somewhat involved. It
does admit an intuitive operational interpretation and an elegant, purely diagram-
matic calculus. A (strict) monoidal category C requires the following data and
axioms:

• a family |C| of objects;

– for each ordered pair of objects (A,B) a corresponding set C(A,B) of
morphisms; it is convenient to abbreviate f ∈ C(A,B) by f : A→ B;

– for each ordered triple of objects (A,B,C), each f : A→ B, and g :
B → C, there is a sequential composite g ◦ f : A→ C; we moreover
require that:

(h ◦ g) ◦ f = h ◦ (g ◦ f) ;

– for each object A there is an identity morphism 1A : A→ A; for f :
A→ B we moreover require that:

f ◦ 1A = f and 1B ◦ f = f ;

• for each ordered pair of objects (A,B) a composite object A⊗B; we more-
over require that:

(A⊗B)⊗ C = A⊗ (B ⊗ C) ; (1)

• there is a unit object I which satisfies:

I⊗A = A = A⊗ I ; (2)

8

• for each ordered pair of morphisms (f : A → C, g : B → D) a parallel
composite f ⊗ g : A⊗B → C⊗D; we moreover require bifunctoriality i.e.

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) . (3)

There is a very intuitive operational interpretation of monoidal categories. We think
of the objects as types of systems. We think of a morphism f : A→ B as a process
which takes a system of type A as input and provides a system of type B as output,
i.e. given any state ψ of the system of typeA, it produces a state f(ψ) of the system
of type B. Composition of morphisms is sequential application of processes. The
compound type A⊗B represents joint systems. We think of I as the trivial system,
which can be either ‘nothing’ or ‘unspecified’. More on this intuitive interpretation
can be found in [8, 10].

Morphisms ψ : I→ A are called elements ofA. At first this might seem to be a
double use of terminology: if A were to be a set, then x ∈ A would be an element,
rather than some function x : I → A. However, one easily sees that elements in
x ∈ A are in bijective correspondence with functions x : I → A provided one
takes I to be a singleton set. The same holds for vectors −→v ∈ V , where V is a
vector space, and linear maps −→v : R → V . In this paper we take the liberty to
jump between these two representations of a vector −→v ∈ V , when using them to
represent meanings.

In the standard definition of monoidal categories the ‘strict’ equality of eqs.
(1,2) is not required but rather the existence of a natural isomorphism between
(A⊗B)⊗C and A⊗ (B ⊗C). We assume strictness in order to avoid coherence
conditions. This simplification is justified by the fact that each monoidal category
is categorically equivalent to a strict one, which is obtained by imposing appro-
priate congruences. Moreover, the graphical language which we introduce below
represents (free) strict monoidal categories. This issue is discussed in detail in [10].

So what is particularly interesting about these monoidal categories is indeed
that they admit a graphical calculus in the following sense [38]:

An equational statement between morphisms in a monoidal category
is provable from the axioms of monoidal categories if and only if it is
derivable in the graphical language.

This fact moreover does not only hold for ordinary monoidal categories, but also for
many kinds that have additional structure, including the compact closed categories
that we will consider here.

9

Graphical language for monoidal categories. In the graphical calculus for monoidal
categories we depict morphisms by boxes, with incoming and outgoing wires la-
belled by the corresponding types, with sequential composition depicted by con-
necting matching outputs and inputs, and with parallel composition depicted by
locating boxes side by side. For example, the morphisms

1A f g ◦ f 1A ⊗ 1B f ⊗ 1C f ⊗ g (f ⊗ g) ◦ h

are depicted as follows in a top-down fashion:

g
B

B D

Cf
B

A

C

B

f
A

B

A

h
B

E

A B

D

C

g
E

A f
f g

A

f

When representing morphisms in this manner by boxes, eq.(3) comes for free [10]!
The unit object I is represented by ‘no wire’; for example

ψ : I→ A π : A→ I π ◦ ψ : I→ I

are depicted as:

A

A π A
π

π ψo

=ψ ψ

3.2 The ‘from-meaning-of-words-to-meaning-of-a-sentence’ process

Monoidal categories are widely used to represent processes between systems of
varying types, e.g. data types in computer programs. The process which is central
to this paper is the one which takes the meanings of words as its input and produces
the meaning of a sentence as output, within a fixed type S (Sentence) that allows
the representation of meanings of all well-typed sentences.

Diagrammatically we represent it as follows:

word 1 word 2 word n. . .
 process depending on
grammathical structure

sentence

= A B Z

S

S

where all triangles represent meanings, both of words and sentences. For example,
the triangle labeled ‘word 1’ represents the meaning of word 1 which is of gram-
matical type A, and the triangle labeled ‘sentence’ represents the meaning of the

10

whole sentence. The concatenation (word 1)· . . . · (word n) is the sentence itself,
which is of grammatical typeA⊗. . .⊗Z, and the way in which the list of meanings
of words:

word 1 word 2 word n. . .
A B Z

becomes the meaning of a sentence:

sentence
S

within the fixed type S, is mediated by the grammatical structure. The concrete
manner in which grammatical structure performs this role will be explained below.
This method will exploit the common mathematical structure which vector spaces
(used to assign meanings to words in a language) and Pregroups (used to assign
grammatical structure to sentences) share, namely compact closure.

3.3 Compact closed categories

A monoidal category is compact closed if for each object A there are also objects
Ar and Al, and morphisms

ηl : I→ A⊗Al εl : Al⊗A→ I ηr : I→ Ar⊗A εr : A⊗Ar→ I

which satisfy:

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr⊗ 1A) ◦ (1A ⊗ ηr) = 1A

(εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr⊗ 1Ar) = 1Ar

Compact closed categories are in a sense orthogonal to cartesian categories,
such as the category of sets and functions with the cartesian product as the monoidal
structure. Diagrammatically, in a cartesian category the triangles representing
meanings of type A ⊗ B could always be decomposed into a triangle represent-
ing meanings of type A and a triangle representing meanings of type B:

Cartesian

non-Cartesian
=

=
=

But if we consider a verb, then its grammatical type is nrsnl, that is, of the form
N ⊗ S ⊗ N within the realm of monoidal categories. Clearly, to compute the

11

meaning of the whole sentence, the meaning of the verb will need to interact with
the meaning of both the object and subject, so it cannot be decomposed into three
disconnected entities:

verb

object subject

meaning of sentence

=

In this graphical language, the topology (i.e. either being connected or not) repre-
sents when interaction occurs. In other words, ‘connectedness’ encodes ‘correla-
tions’.

That we cannot always decompose triangles representing meanings of typeA⊗
B in compact closed categories can be immediately seen in the graphical calculus
of compact closed categories, which explicitly introduces wires between different
types, and these will mediate flows of information between words in a sentence. A
fully worked out example of sentences of this type is given in section 4.1.

Graphical language for compact closed categories. When depicting the mor-
phisms ηl, εl, ηr, εr as (read in a top-down fashion)

A Al A A

A Al

r

A Ar

rather than as triangles, the axioms of compact closure simplify to:

=

A

A

A

A

=A

A A

A

r

r

=

A

A

A

A

=A

A A

Al l

ll

r

r

i.e. they boil down to ‘yanking wires’.

Vector spaces, linear maps and tensor product as a compact closed category.
Let FVect be the category which has vector spaces over the base field R as objects,
linear maps as morphisms and the vector space tensor product as the monoidal
tensor. In this category, the tensor is commutative, i.e. V ⊗W ∼= W ⊗ V , and left
and right adjoints are the same, i.e. V l = V r so we denote either by V ∗, which

12

is the identity maps, i.e. V ∗ = V . To simplify the presentation we assume that
each vector space comes with an inner product, that is, it is an inner-product space.
For the case of vector space models of meaning this is always the case, since we
consider a fixed base, and a fixed base canonically induces an inner-product. The
reader can verify that compact closure arises, given a vector space V with base
{−→e i}i, by setting V l = V r = V ,

ηl = ηr : R→ V ⊗ V :: 1 7→
∑
i

−→e i ⊗−→e i (4)

and
εl = εr : V ⊗ V → R ::

∑
ij

cij
−→v i ⊗−→w j 7→

∑
ij

cij〈−→v i|−→w j〉 . (5)

In equation 4 we have that εl = εr is the inner-product extended by linearity to the
whole tensor product. Recall that if {−→e i}i is a base for V and if {−→e ′i}i is a base
forW then {−→e i⊗−→e ′j}ij is a base for V ⊗W . In the base {−→e i⊗−→e j}ij for V ⊗V
the linear map εl = εr : V ⊗ V → R has as its matrix the row vector which has
entry 1 for the base vectors −→e i ⊗ −→e i and which has entry 0 for the base vectors
−→e i ⊗ −→e j with i 6= j. The matrix of ηl = ηr is the column vector obained by
transposition.

In eq. (5), the weighted sum
∑

ij cij
−→v i ⊗ −→w j denotes a typical vector in a

tensor space V ⊗W , where cij’s enumerate all possible weights for the tensored
pair of base vectors−→v i⊗−→w j . If in the definition of εl = εr we apply the restriction
that −→v i = −→w i = −→e i, which we can do if we stipulate that εl = εr is a linear map,
then it simplifies to

εl = εr : V ⊗ V → R ::
∑
ij

cij
−→e i ⊗−→e j 7→

∑
i

cii .

A Pregroup as a compact closed category. A Pregroup is an example of a pose-
tal category, that is, a category which is also a poset. For a category this means
that for any two objects there is either one or no morphism between them. In the
case that this morphism is of type A→ B then we write A ≤ B, and in the case it
is of type B → A we write B ≤ A. The reader can then verify that the axioms of a
category guarantee that the relation ≤ on |C| is indeed a partial order. Conversely,
any partially ordered set (P,≤) is a category. For ‘objects’ p, q, r ∈ P we take
[p ≤ q] to be the singleton {p ≤ q} whenever p ≤ q, and empty otherwise. If
p ≤ q and q ≤ r we define p ≤ r to be the composite of the ‘morphisms’ p ≤ q
and q ≤ r.

A partially ordered monoid is a monoidal category with the monoid multipli-
cation as tensor on objects; whenever p ≤ r and q ≤ z then we have p · q ≤ r · z

13

by monotonicity of monoid multiplication, and we define this to be the tensor of
‘morphisms’ [p ≤ r] and [q ≤ z]. Bifunctoriality, as well as any equational state-
ment between morphisms in posetal categories, is trivially satisfied, since there can
only be one morphism between any two objects.

Finally, each Pregroup is a compact closed category for

ηl = [1 ≤ p · pl] εl = [pl · p ≤ 1]

ηr = [1 ≤ pr · p] εr = [p · pr≤ 1]

and so the required equations are again trivially satisfied. Diagrammatically, the
under-links representing the type reductions in a Pregroup grammar are exactly the
‘cups’ of the compact closed structure. The symbolic counterpart of the diagram
of the reduction of a sentence with a transitive verb

n nr s nl n

is the following morphism:

εrn ⊗ 1s ⊗ εln : n⊗ nr ⊗ s⊗ nl ⊗ n→ s .

3.4 Categories representing both grammar and meaning

We have described two aspects of natural language which admit mathematical pre-
sentations:

1. vector spaces can be used to assign meanings to words in a language;

2. Pregroups can be used to assign grammatical structure to sentences.

When we organize these vector spaces as a monoidal category by also considering
linear maps, and tensor products both of vector spaces and linear maps, then these
two mathematical objects share common structure, namely compact closure. We
can think of these two compact closed structures as two structures that we can
project out of a language, where P is the free Pregroup generated from the basic
types of a natural language:

language

FVect
�

m
ea
ni
ng

P

gram
m
ar
-

14

We aim for a mathematical structure that unifies both of these aspects of lan-
guage, that is, in which the compositional structure of Pregroups would lift to the
level of assigning meaning to sentences and their constituents, or dually, where the
structure of assigning meaning to words comes with a mechanism that enables us
to compute the meaning of a sentence. The compact closed structure of FVect
alone is too degenerate for this purpose since Al = Ar = A. Moreover, there are
canonical isomorphisms V ⊗W →W ⊗V which translate to posetal categories as
a · b = b · a, and in general we should not be able to exchange words in a sentence
without altering its meaning. Therefore we have to refine types to retain the full
grammatical content obtained from the Pregroup analysis. There is an easy way of
doing this: rather than objects in FVect we will consider objects in the product
category FVect× P :

language

FVect �
πm

�

m
ea
ni
ng

FVect× P
?

πg
- P

gram
m
ar
-

Explicitly, FVect×P is the category which has pairs (V, a) with V a vector space
and a ∈ P a grammatical type as objects, and the following pairs as morphisms:

(f : V →W , p ≤ q) ,

which we can also write as

(f,≤) : (V, p)→ (W, q).

Note that if p 6≤ q then there are no morphisms of type (V, p) → (W, q). It is
easy to verify that the compact closed structure of FVect and P lifts component-
wise to one on FVect × P . The structural morphisms in this new category are
now:

(ηl,≤) : (R, 1)→ (V ⊗ V, p · pl) (ηr,≤) : (R, 1)→ (V ⊗ V, pr · p)

(εl,≤) : (V ⊗ V, pl · p)→ (R, 1) (εr,≤) : (V ⊗ V, p · pr)→ (R, 1)

3.5 Meaning of a sentence as a morphism in FVect× P .

Definition 3.1. We refer to an object (W,p) of Fvect × P as a meaning space .
This consists of a vector space W in which the meaning of a word lives −→w ∈ W
and the grammatical type p of the word.

15

Definition 3.2. We define the vector −−−−−−→w1 · · ·wn of the meaning of a string of words
w1 · · ·wn to be

−−−−−−→w1 · · ·wn := f(−→w1 ⊗ · · · ⊗ −→wn)

where for (Wi, pi) meaning space of the word wi, the linear map f is built by
substituting each pi in [p1 · · · pn ≤ x] with Wi.

Thus for α = [p1 · · · pn → x] a morphism in P and f = α[pi \Wi] a linear
map in Fvect, the following is a morphism in Fvect× P :

(W1 ⊗ · · · ⊗Wn, p1 · · · pn)
(f,≤)- (X,x)

We call f the ‘from-meaning-of-words-to-meaning-of-a-sentence’ map.

According to this formal definition, the procedure of assigning meaning to a
string of words can be roughly described as follows:

1. Assign a grammatical type pi to each word wi of the string, apply the axioms
and rules of the Pregroup grammar to reduce these types to a simpler type
p1 · · · pn → x. If the string of words is a sentence, then the reduced type x
should be the basic grammatical type s of a sentence4.

2. Assign a vector space to each word of the sentence based on its syntactic
type assignment. For the purpose of this paper, we prefer to be flexible with
the manner in which these vector spaces are built, e.g. the vector spaces of
the words with basic types like noun may be atomic and built according to
the usual rules of the distributional model; the vector spaces of the words
with compound types like verbs are tensor spaces.

3. Consider the vector of the meaning of each word in the spaces built above,
take their tensor, and apply to it the diagram of the syntactic reduction of the
string, according to the meaning spaces of each word. This will provide us
with the meaning of the string.

3.6 Comparison with the connectionist proposal

Following the solution of connectionists [39], Pulman and the third author argued
for the use of tensor products in developing a compositional distributional model
of meaning [6]. They suggested that to implement this idea in linguistics one can,

4By Lambek’s switching lemma [19] the epsilon maps suffice for the grammatical reductions and
thus x already exists in the type of one of the words in the string.

16

for example, traverse the parse tree of a sentence and tensor the vectors of the
meanings of words with the vectors of their roles:

(
−−→
John⊗

−−→
subj)⊗

−−→
likes⊗ (

−−−→
Mary⊗

−→
obj)

This vector in the tensor product space should then be regarded as the meaning of
the sentence “John likes Mary.”

The tensors (
−−→
John⊗

−−→
subj) and (

−−−→
Mary⊗

−→
obj) in the above are pure tensors, and

thus can be considered as a pair of vectors, i.e. (
−−→
John,

−−→
subj) and (

−−−→
Mary,

−→
obj). These

are pairs of a meaning of a word and its grammatical role, and almost the same as
the pairs considered in our approach, i.e. that of a meaning space of each word. A
minor difference is that, in the above, the grammatical role −→p is a genuine vector,
whereas in our approach this remains a grammatical type. If needed, our approach
can easily be adapted to also allow types to be represented in a vector space.

A more conceptual difference between the two approaches lies in the fact that
the above does not assign a grammatical type to the verb, i.e. treats

−−→
likes as a single

vector. Whereas in our approach, the vector of the verb itself lives in a tensor space.

4 Computing the meaning of example sentences

In what follows we use the steps above to assign meaning to positive and negative
transitive sentences5.

4.1 Positive Transitive Sentence

A positive sentence with a transitive verb has the Pregroup type n(nrsnl)n. We
assume that the meaning spaces of the subject and object of the sentence are atomic
and are given as (V, n) and (W,n). The meaning space of the verb is compound
and is given as (V ⊗ S ⊗W,nrsnl). The ‘from-meaning-of-words-to-meaning-of-
a-sentence’ linear map f is the linear map which realizes the following structural
morphism in FVect× P :(

V ⊗ T ⊗W ,n(nrsnl)n
) (f,≤)- (S, s) ,

and arises from a syntactic reduction map; in this case we obtain:

f = εV ⊗ 1S ⊗ εW : V ⊗ (V ⊗ S ⊗W)⊗W → S .

5For the negative example, we use the idea and treatment of previous work [31], in that we use
eta maps to interpret the logical meaning of “does” and “not”, but extend the details of calculations,
diagrammatic representations, and corresponding comparisons.

17

Noting the isomorphism V ⊗S⊗W ∼= V ⊗W⊗S ∼= V ∗⊗W ∗ → S obtained from
the commutativity of tensor in the FVect and that V ∗ = V and W ∗ = W therein,
and the universal property of the tensor with respect to product, we can think about
the meaning space of a verb V ⊗W ⊗ S as a function space V ×W → S. So the
meaning vector of each transitive verb can be thought of as a function that inputs a
subject from V and an object from W and outputs a sentence in S.

In the graphical calculus, the linear map of meaning is depicted as follows:

The matrix of f has dim(V)2 × dim(S)× dim(W)2 columns and dim(S) rows,
and its entries are either 0 or 1. When applied to the vectors of the meanings of
the words, i.e. f(−→v ⊗

−→
Ψ ⊗ −→w) ∈ S for −→v ⊗

−→
Ψ ⊗ −→w ∈ V ⊗ S ⊗W we obtain,

diagrammatically:

v wΨ

This map can be expressed in terms of the inner-product as follows. Consider the
typical vector in the tensor space which represents the type of verb:

Ψ =
∑
ijk

cijk
−→v i ⊗−→s j ⊗−→w k ∈ V ⊗ S ⊗W

then

f(−→v ⊗
−→
Ψ ⊗−→w) = εV ⊗ 1S ⊗ εW (−→v ⊗

−→
Ψ ⊗−→w)

=
∑
ijk

cijk〈−→v |−→v i〉−→s j〈−→w k|−→w 〉

=
∑
j

(∑
ik

cijk〈−→v |−→v i〉〈−→w k|−→w 〉

)
−→s j .

This vector is the meaning of the sentence of type n(nrsnl)n, and assumes as given
the meanings of its constituents −→v ∈ V ,

−→
Ψ ∈ T and −→w ∈ W , obtained from data

using some suitable method.
Note that, in Dirac notation, f(−→v ⊗

−→
Ψ ⊗−→w) is written as:(

〈εrV | ⊗ 1S ⊗ 〈εrV |
) ∣∣−→v ⊗−→Ψ ⊗−→w 〉.

Also, the diagrammatic calculus tells us that:

18

v wΨ
v w

Ψ=

where the reversed triangles are now the corresponding Dirac-bra’s, or in vector
space terms, the corresponding functionals in the dual space. This simplifies the
expression that we need to compute to:

(〈−→v | ⊗ 1S ⊗ 〈−→v |)|
−→
Ψ〉

As mentioned in the introduction, our focus in this paper is not on how to practi-
cally exploit the mathematical framework, which would require substantial further
research, but to expose the mechanisms which govern it. To show that this par-
ticular computation (i.e. the ‘from-meaning-of-words-to-meaning-of-a-sentence’-
process) does indeed produce a vector which captures the meaning of a sentence,
we explicitly compute f(−→v ⊗

−→
Ψ ⊗−→w) for some simple examples, with the inten-

tion of providing the reader with some insight into the underlying mechanisms and
how the approach relates to existing frameworks.

Example 1. One Dimensional Truth-Theoretic Meaning. Consider the sen-
tence

John likes Mary. (6)

We encode this sentence as follows; we have:

−−→
John ∈ V,

−−→
likes ∈ T, −−−→

Mary ∈W

where we take V to be the vector space spanned by men and W the vector space
spanned by women. In terms of context vectors this means that each word is its
own and only context vector, which is of course a far too simple idealisation for
practical purposes. We will conveniently assume that all men are referred to as
male, using indices to distinguish them: mi. Thus the set of vectors {−→m i}i spans
V . Similarly every woman will be referred to as female and distinguished by fj ,
for some j, and the set of vectors {

−→
f j}j spans W . Let us assume that John in

sentence (6) is m3 and that Mary is f4.
If we are only interested in the truth or falsity of a sentence, we have two

choices in creating the sentence space S: it can be spanned by two basis vectors
|0〉 and |1〉 representing the truth values of true and false, or just by a single vector
−→
1 , which we identify with true, the origin

−→
0 is then identified with false (so we

use Dirac notation for the basis to distinguish between the origin
−→
0 and the |0〉

basis vector). This latter approach might feel a little unintuitive, but it enables us

19

to establish a convenient connection with the relational Montague-style models of
meaning, which we shall present in the last section of the paper.

The transitive verb
−−→
likes is encoded as the superposition:

−−→
likes =

∑
ij

−→mi ⊗
−−→
likesij ⊗

−→
fj

where
−−→
likesij =

−→
1 if mi likes fj and

−−→
likesij =

−→
0 otherwise. Of course, in practice,

the vector that we have constructed here would be obtained automatically from
data using some suitable method.

Finally, we obtain:

f
(−→m3 ⊗

−−→
likes⊗

−→
f 4

)
=
∑
ij

〈−→m3 | −→mi〉
−−→
likesij〈

−→
f j |

−→
f 4〉

=
∑
ij

δ3i
−−→
likesij δj4

=
−−→
likes34 =

{−→
1 m3 likes f4−→
0 o.w.

So we indeed obtain the correct truth-value meaning of our sentence. We are not
restricted to the truth-value meaning; on the contrary, we can have, for example,
degrees of meaning, as shown in section 5.

Example 1b. Two Dimensional Truth-Theoretic Meaning. It would be more
intuitive to assume that the sentence space S is spanned by two vectors |0〉 and
|1〉, which stand for false and true respectively. In this case, the computing of the
meaning map proceeds in exactly the same way as in the one dimensional case.
The only difference is that when the sentence “John likes Mary” is false, the vector
likesij takes the value |0〉 rather than just the origin

−→
0 , and if it is true it takes the

value |1〉 rather than
−→
1 .

4.2 Negative Transitive Sentence

The types of a sentence with negation and a transitive verb, for example “John does
not like Mary”, are:

n (nrsjlσ) (σrjjlσ) (σrjnl)n

Similar to the positive case, we assume the vector spaces of the subject and object
are atomic (V, n), (W,n). The meaning space of the auxiliary verb is (V ⊗ S ⊗
J ⊗ V, nrsjlσ), that of the negation particle is (V ⊗ J ⊗ J ⊗ V, σrjjlσ), and that

20

of the verb is (V ⊗ J ⊗W,σrjnl). The ‘from-meaning-of-words-to-meaning-of-
a-sentence’ linear map f is:

f = (1S ⊗ εJ ⊗ εJ) ◦ (εV ⊗ 1S ⊗ 1J∗ ⊗ εV ⊗ 1J ⊗ 1J∗ ⊗ εV ⊗ 1J ⊗ εW) :

V ⊗ (V ∗ ⊗ S ⊗ J∗ ⊗ V)⊗ (V ∗ ⊗ J ⊗ J∗ ⊗ V)⊗ (V ∗ ⊗ J ⊗W ∗)⊗W → S

and depicted as:
v wΨnot

When applied to the meaning vectors of words one obtains:

f(−→v ⊗
−−→
does⊗−→not⊗

−→
Ψ ⊗−→w)

which is depicted as:

v wΨdoes not

where
−−→
does and

−→
not are the vectors corresponding to the meanings of “does” and

“not”. Since these are logical function words, we may decide to assign meaning
to them manually and without consulting the document. For instance, for does we
set:

S = J and
−−→
does =

∑
ij

−→e i ⊗−→e j ⊗−→e j ⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V .

As explained in section 3.1, vectors in V ⊗ J ⊗ J ⊗ V can also be presented as
linear maps of type R→ V ⊗ J ⊗ J ⊗ V , and in the case of does we have:

−−→
does ' (1V ⊗ ηJ ⊗ 1V) ◦ ηV : R→ V ⊗ J ⊗ J ⊗ V

which shows that we only relied on structural morphisms.
As we will demonstrate in the examples below, by relying only on η-maps, does

acts very much as an ‘identity’ with respect to the flow of information between the
words in a sentence. This can be formalized in a more mathematical manner. There
is a well-known bijective correspondence between linear maps of type V →W and
vectors in V ⊗W . Given a linear map f : V → W then the corresponding vector
is:

Ψf =
∑
i

−→e i ⊗ f(−→e i)

21

where {−→e i}i is a basis for V . Diagrammatically we have:

f = f
V

W

=⇒ Ψf = f
V

WV

Take this linear map to be the identity on V and we obtain ηV .
The trick to implement not will be to take this linear map to be the linear matrix

representing the logical not. Concretely, while the matrix of the identity is
(

1 0
0 1

)
,

the matrix of the logical not is
(

0 1
1 0

)
. In Dirac notation, the vector corresponding

to the identity is |00〉 + |11〉, while the vector corresponding to the logical not is
|01〉+ |10〉. While we have

−−→
does =

∑
i

−→e i ⊗ (|00〉+ |11〉)⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V ,

we will set

−→
not =

∑
i

−→e i ⊗ (|01〉+ |10〉)⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V .

Diagrammatically we have:

−−→
does =

−→
not =

not

Substituting all of this in f(−→v ⊗
−−→
does⊗−→not⊗

−→
Ψ⊗−→w) we obtain, diagrammatically:

v wΨnot

which by the diagrammatic calculus of compact closed categories is equal to:

v wΨ
v w

Ψ=

not not
(7)

since in particular we have that:

22

not not

=

where the configuration on the left always encodes the transpose and the matrix of
the not is obviously self-transpose. In the language of vectors and linear maps, the
left hand side of eq. (7) is:(

εV ⊗
(

0 1
1 0

)
⊗ εW

)
(−→v ⊗

−→
Ψ ⊗−→w) .

Note that the above pictures are very similar to the ones encountered in [7, 9]
which describe quantum informatic protocols such as quantum teleportation and
entanglement swapping. There the morphisms η and ε encode Bell-states and cor-
responding measurement projectors.

Example 2. Negative Truth-Theoretic Meaning. The meaning of the sentence

John does not like Mary

is calculated as follows. We assume that the vector spaces S = J are spanned by

the two vectors as in Example 1b, |1〉 =

(
0
1

)
and |0〉 =

(
1
0

)
. We assume that |1〉

stands for true and that |0〉 stands for false. Vector spaces V and W are as in the
positive case above. The vector of like is as before:

−→
like =

∑
ij

−→mi ⊗
−−→
likeij ⊗

−→
fj for

−−→
likeij =

{
|1〉 mi likes fj
|0〉 o.w.

Setting N =

(
0 1
1 0

)
we obtain:

(εV ⊗N ⊗ εW)
(−→m 3 ⊗

−−→
likes⊗

−→
f 4

)
=
∑
ij

〈−→m 3 | −→mi〉N(
−−→
likesij)〈

−→
f j |
−→
f4 〉 =

∑
ij

δ3iN(
−−→
likesij) δj4 = N(

−−→
likes34) =

{
|1〉

−−→
like34 = |0〉

|0〉
−−→
like34 = |1〉

=

{
|1〉 m3 does not like f4
|0〉 o.w.

That is, the meaning of “John does not like Mary” is true if
−−→
like34 is false, i.e. if

the meaning of “John likes Mary” is false.

23

For those readers who are suspicious of our graphical reasoning, here is the
full-blown symbolic computation. Abbreviating |10〉 + |01〉 to n and |00〉 + |11〉
to d, and setting f = h ◦ g with

h = 1J ⊗ εJ ⊗ εJ and g = εV ⊗ 1J ⊗ 1J ⊗ εV ⊗ 1J ⊗ 1J ⊗ εV ⊗ 1J ⊗ εW

f

−→m3 ⊗
(∑

l

−→ml ⊗ d⊗−→ml

)
⊗
(∑

k

−→mk ⊗ n⊗−→mk

)
⊗
(∑

ij

−→mi ⊗
−−→
likeij ⊗

−→
f j

)
⊗
−→
f 4


= h

∑
ijkl

〈−→m3 | −→ml〉 d 〈−→ml | −→mk〉n 〈−→mk | −→mi〉
−−→
likeij〈

−→
f j |

−→
f 4〉


= h

∑
ijkl

δ3l d δlk n δki
−−→
likeijδj4


= h

(
d⊗ n⊗

−−→
like34

)
= h

(
(|00〉+ |11〉)⊗ (|10〉+ |01〉)⊗

−−→
like34

)
= h

(
|0010

−−→
like34〉+ |0001

−−→
like34〉+ |1110

−−→
like34〉+ |1101

−−→
like34〉

)
= |0〉〈0 | 1〉〈0 |

−−→
like34〉+ |0〉〈0 | 0〉〈1 |

−−→
like34〉+

|1〉〈1 | 1〉〈0 |
−−→
like34〉+ |1〉〈1 | 0〉〈1 |

−−→
like34〉

= |0〉〈1 |
−−→
like34〉+ |1〉〈0 |

−−→
like34〉

=

{
|1〉

−−→
like34 = |0〉

|0〉
−−→
like34 = |1〉

5 Comparing meanings of sentences

One of the advantages of our approach to compositional meaning is that the mean-
ings of sentences are all vectors in the same space, so we can use the inner product
to compare the meaning vectors. This measure has been referred to and widely
used as a degree of similarity between meanings of words in the distributional ap-
proaches to meaning [36]. Here we extend it to strings of words as follows.

Definition 5.1. Two strings of words w1 · · ·wk and w′1 · · ·w′l have degree of
similarity m iff their Pregroup reductions result in the same grammatical type6

6If one wishes to do so, meaning of phrases that do not have the same grammatical types can also
be compared, but only after transferring them to a common dummy space.

24

and we have

1

N ×N ′
〈
f(−→w1 ⊗ · · · ⊗ −→wk) | f(

−→
w′1 ⊗ · · · ⊗

−→
w′l)
〉

= m

for
N = | f(−→w1 ⊗ · · · ⊗ −→wk) | N ′ = | f(

−→
w′1 ⊗ · · · ⊗

−→
w′l) |

where | −→v | is the norm of−→v , that is, | −→v |2= 〈−→v | −→v 〉, and f, f ′ are the meaning
maps defined according to definition 3.2

Thus we use this tool to compare meanings of positive sentences to each other,
meanings of negative sentences to each other, and more importantly meanings of
positive sentences to negative ones. For example, we compare the meaning of
“John likes Mary” to “John loves Mary”, the meaning of “John does not like Mary”
to “John does not love Mary”, and also the meaning of the latter two sentences to
“John likes Mary” and “John loves Mary”. To make the examples more interesting,
we assume that “likes” has degrees of both “love” and “hate”.

Example 3. Hierarchical Meaning. Similar to before, we have:

−−→
loves =

∑
ij

−→mi ⊗
−−→
lovesij ⊗

−→
fj

−−→
hates =

∑
ij

−→mi ⊗
−−→
hatesij ⊗

−→
fj

where
−−→
lovesij = |1〉 if mi loves fj and

−−→
lovesij = |0〉 otherwise, and

−−→
hatesij = |1〉

if mi hates fj and
−−→
hatesij = |0〉 otherwise. Define likes to have degrees of love and

hate as follows:

−−→
likes =

3

4

−−→
loves +

1

4

−−→
hates =

∑
ij

−→mi ⊗
(

3

4

−−→
lovesij +

1

4

−−→
hatesij

)
⊗
−→
fj

The meaning of our example sentence is thus obtained as follows:

f
(−→m 3 ⊗

−−→
likes⊗

−→
f 4

)
= f

(
−→m 3 ⊗

(
3

4

−−→
loves +

1

4

−−→
hates

)
⊗
−→
f 4

)
=
∑
ij

〈−→m 3 | −→mi〉
(

3

4

−−→
lovesij +

1

4

−−→
hatesij

)〈−→
f j |
−→
f4
〉

=
∑
ij

δ3i

(
3

4

−−→
lovesij +

1

4

−−→
hatesij

)
δj4

=
3

4

−−→
loves34 +

1

4

−−→
hates34

25

Example 4. Negative Hierarchical Meaning. To obtain the meaning of “John
does not like Mary” in this case, one inserts 3

4

−−−→
lovesij + 1

4

−−−→
hatesij for

−−−→
likesij in the

calculations and one obtains:

h

(
d⊗ n⊗

(
3

4

−−−→
loves34 +

1

4

−−−→
hates34

))
=

1

4

−−→
loves34 +

3

4

−−→
hates34

That is, the meaning of “John does not like Mary” is the vector obtained from the
meaning of “John likes Mary” by swapping the basis vectors.

Example 5. Degree of similarity of positive sentences. The meanings of the
distinct verbs loves, likes and hates in the different sentences propagate through
the reduction mechanism and reveal themselves when computing inner-products
between sentences in the sentence space. For instance, the sentence “John loves
Mary” and “John likes Mary” have a degree of similarity of 3/4, calculated as
follows:〈

f
(−→m3 ⊗

−−→
loves⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
likes⊗

−→
f 4

)〉
=
〈−−→

loves34
∣∣ −−→likes34

〉
In the above, we expand the definition of

−−→
likes34 and obtain:〈−−→

loves34
∣∣ 3
4

−−→
loves34 + 1

4

−−→
hates34

〉
=

3

4

〈−−→
loves34

∣∣ −−→loves34
〉

+
1

4

〈−−→
loves34

∣∣ −−→hates34
〉

and since
−−→
loves34 and

−−→
hates34 are always orthogonal, that is, if one is |1〉 then the

other one is |0〉, we have that〈−−−−−−−−−−−→
John loves Mary

∣∣ −−−−−−−−−−→John likes Mary
〉

=
3

4
|
−−−→
loves34 |2

Hence the degree of similarity of these sentences is 3
4 . A similar calculation pro-

vides us with the following degrees of similarity. For notational simplicity we drop
the square of norms from now on, i.e. we implicitly normalize meaning vectors.〈−−−−−−−−−−−→

John hates Mary
∣∣ −−−−−−−−−−→John likes Mary

〉
=〈

f
(−→m3 ⊗

−−→
hates⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
likes⊗

−→
f 4

)〉
=

1

4〈−−−−−−−−−−−→
John loves Mary

∣∣ −−−−−−−−−−−→John hates Mary
〉

=〈
f
(−→m3 ⊗

−−→
loves⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
hates⊗

−→
f 4

)〉
= 0 .

26

Example 6. Degree of similarity of negative sentences. In the negative case, the
meaning of the composition of the meanings of the auxiliary and negation markers
(“does not”), applied to the meaning of the verb, propagates through the computa-
tions and defines the cases of the inner product. For instance, the sentences “John
does not love Mary” and “John does not like Mary” have a degree of similarity of
3/4, calculated as follows:〈−−−−−−−−−−−−−−−−→

John does not love Mary
∣∣ −−−−−−−−−−−−−−−−→John does not like Mary

〉
=〈

f
(−→m3 ⊗

−−→
does⊗−→not⊗

−−→
love⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
does⊗−→not⊗

−→
like⊗

−→
f 4

)〉
=
〈−−→

hates34
∣∣∣ 1
4

−−→
loves34 + 3

4

−−→
hates34

〉
= 1

4

〈−−→
hates34

∣∣∣ −−→loves34
〉

+ 3
4

〈−−→
hates34

∣∣∣ −−→hates34
〉

= 3
4

Example 7. Degree of similarity of positive and negative sentences. Here we
compare the meanings of positive and negative sentences. This is perhaps of special
interest to linguists of distributional meaning, since these sentences do not have the
same grammatical structure. That we can compare these sentences shows that our
approach does not limit us to the comparison of meanings of sentences that have
the same grammatical structure. We have:

〈
f
(−→m3 ⊗

−−→
does⊗−→not⊗

−→
like⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
loves⊗

−→
f 4

)〉
=

1

4〈
f
(−→m3 ⊗

−−→
does⊗−→not⊗

−→
like⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
hates⊗

−→
f 4

)〉
=

3

4

The following is the most interesting case:〈
f
(−→m3 ⊗

−−→
does⊗−→not⊗

−→
like⊗

−→
f 4

) ∣∣∣ f(−→m3 ⊗
−−→
likes⊗

−→
f 4

)〉
=
〈1

4

−−→
loves34 +

3

4

−−→
hates34

∣∣∣ 3

4

−−→
loves34 +

1

4

−−→
hates34

〉
= (

1

4
× 3

4
)
〈−−→
loves34

∣∣∣ −−→loves34
〉

+ (
3

4
× 1

4
)
〈−−→
hates34

∣∣∣ −−→hates34
〉

= (
1

4
× 3

4
) + (

3

4
× 1

4
) =

3

8

This value might feel non-intuitive, since one expects that “like” and “does not
like” have zero intersection in their meanings. This would indeed be the case had
we used our original truth-value definitions. But since we have set “like” to have
degrees of “love” and “hate”, their intersection will no longer be 0.

27

Using the same method, one can form and compare meanings of many different
types of sentences. In a full-blown vector space model, which has been automati-
cally extracted from large amounts of text, we obtain ‘imperfect’ vector represen-
tations for words, rather than the ‘ideal’ ones presented here. But the mechanism
of how the meanings of words propagate to the meanings of sentences remains the
same.

6 Relations vs Vectors for Montague-style semantics

When fixing a base for each vector space we can think of FVect as a category
of which the morphisms are matrices expressed in this base. These matrices have
real numbers as entries. It turns out that if we consider matrices with entries not in
(R,+,×), but in any other semiring7 (R,+,×), we again obtain a compact closed
category. This semiring does not have to be a field, and can for example be the
positive reals (R+,+,×), positive integers (N,+,×) or even Booleans (B,∨,∧).

In the case of (B,∨,∧), we obtain an isomorphic copy of the category FRel
of finite sets and relations with the cartesian product as tensor, as follows. Let X
be a set whose elements we have enumerated as X =

{
xi | 1 ≤ i ≤ |X|

}
. Each

element can be seen as a column with a 1 at the row equal to its number and 0 in all
other rows. Let Y =

{
yj | 1 ≤ j ≤ |Y |

}
be another enumerated set. A relation

r ⊆ X × Y is represented by an |X | × |Y | matrix, where the entry in the ith
column and jth row is 1 iff (xi, yj) ∈ r or else 0. The composite s ◦ r of relations
r ⊆ X × Y and s ⊆ Y × Z is

{(x, z) | ∃y ∈ Y : (x, y) ∈ r, (y, z) ∈ s} .

The reader can verify that this composition induces matrix multiplication of the
corresponding matrices.

Interestingly, in the world of relations (but not functions) there is a notion of
superposition [8]. The relations of type r ⊆ {∗}×X (in matricial terms, all column
vectors with 0’s and 1’s as entries) are in bijective correspondence with the subsets
of X via the correspondence

r 7→ {x ∈ X | (∗, x) ∈ r} .

Each such subset can be seen as the superposition of the elements it contains. The
inner-product of two subsets is 0 if they are disjoint and 1 if they have a non-empty
intersection. So we can think of two disjoint sets as being orthogonal.

7A semiring is a set together with two operations, addition and multiplication, for which we have
a distributive law but no additive nor multiplicative inverses. Having an addition and multiplication
of this kind suffices to have a matrix calculus.

28

Since the abstract nature of our procedure for assigning meaning to sentences
did not depend on the particular choice of FVect we can now repeat it for the
following situation:

language

FRel �
πm

�

m
ea
ni
ng

FRel× P
?

πg
- P

gram
m
ar
-

In FRel×P we recover a Montague-style Boolean semantics. The vector spaces in
this setting are encodings of sets of individuals and relations over these sets. Inner
products take intersections between the sets and eta maps produce new relations by
connecting pairs that are not necessarily side by side.

In all our examples so far, the vector spaces of subject and object were es-
sentially sets that were encoded in a vector space framework. This was done by
assuming that each possible male subject is a base in the vector space of males
and similarly for the female objects. That is why the meaning in these examples
was a truth-theoretic one. We repeat our previous calculations for example 1 in the
relational setting of FRel× P .

Example 1 revisited. Consider the singleton set {∗}; we assume that it signifies the
vector space S. We assume that the two subsets of this set, namely {∗} and ∅, will
respectively identify true and false. We now have sets V ,W and T = V ×{∗}×W
with

V := {mi}i , likes ⊂ T, W := {fj}j
such that:

likes := {(mi, ∗, fj) | mi likes fj} =
⋃
ij

{mi} × ∗ij × {fj}

where ∗ij is either {∗} or ∅. So we obtain

f ({m3} × likes× {f4}) =
⋃
ij

({m3}∩{mi})×∗ij×
(
{fj}∩{f4}

)
= ∗34 .

7 Future Work

This paper aims to lay a mathematical foundation for the new field of compositional
distributional models of meaning in the realm of computational and mathematical

29

linguistics, with applications to language processing, information retrieval, artifi-
cial intelligence, and in a conceptual way to the philosophy of language. This is
just the beginning and there is so much more to do, both on the practical and the
theoretical sides. Here are some examples:

• On the logical side, our “not” matrix works by swapping basis and is thus
essentially two dimensional. Developing a canonical matrix of negation, one
that works uniformly for any dimension of the meaning spaces, constitutes
future work. The proposal of [41] in using projection to the orthogonal sub-
space might be an option.

• A similar problem arises for the meanings of other logical words, such as
“and”, “or”, “if then”. So we need to develop a general logical setting on top
of our meaning category FVect × P. One subtlety here is that the opera-
tion that first come to mind, i.e. vector sum and product, do not correspond
to logical connective of disjunction and conjunction (since e.g. they are not
fully distributive). However, the more relaxed setting of vector spaces en-
ables us to also encode words such as ”but”, whose meaning depends on the
context and thus do not have a unique logical counterpart.

• Formalizing the connection with Montague-semantics is another future di-
rection. Our above ideas can be generalized by proving a representation
theorem for Fvect×P on the semiring of Booleans with respect to the cat-
egory of FRel of sets and relations. It would then be interesting to see how
the so called ‘non-logical’ axioms of Montague are manifested at that level,
e.g. as adjoints to substitution to recover quantifiers.

• Along similar semantic lines, it would be good to have a Curry-Howard-like
isomorphism between non-commutative compact closed categories, bicom-
pact linear logic [4], a version of lambda calculus. This will enable us to
automatically obtain computations for the meaning and type assignments of
our categorical setting.

• Our categorical axiomatics is flexible enough to accommodate mixed states
[37], so in principle we are able to study their linguistic significance, and for
instance implement the proposals of [3].

• Finally, and perhaps most importantly, the mathematical setting needs to be
implemented and evaluated, by running experiments on real corpus data.
Efficiency and the complexity of our approach then become an issue and
need to be investigated, along with optimization techniques.

30

Acknowledgements

Support from EPSRC Advanced Research Fellowship EP/D072786/1 and Euro-
pean Committee grant EC-FP6-STREP 033763 for Bob Coecke, EPSRC Post-
doctoral Fellowship EP/F042728/1 for Mehrnoosh Sadrzadeh, and EPSRC grant
EP/E035698/1 for Stephen Clark are gratefully acknowledged. We thank Keith
Van Rijsbergen, Stephen Pulman, and Edward Grefenstette for discussions, and
Mirella Lapata for providing relevant references for vector space models of mean-
ing.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science, pages 415–425. IEEE Computer Science Press, 2004. arXiv:quant-
ph/0402130.

[2] Jerome R. Bellegarda. Exploiting latent semantic information in statistical
language modeling. Proceedings of the IEEE, 88(8):1279–1296, 2000.

[3] P. Bruza and D. Widdows. Quantum information dynamics and open world
science. In Proceedings of AAAI Spring Symposium on Quantum Interaction.
AAAI Press, 2007.

[4] W. Buszkowski. Lambek grammars based on pregroups. Logical Aspects of
Computational Linguistics, 2001.

[5] Freddy Choi, Peter Wiemer-Hastings, and Johanna Moore. Latent Semantic
Analysis for text segmentation. In Proceedings of the EMNLP Conference,
pages 109–117, 2001.

[6] S. Clark and S. Pulman. Combining symbolic and distributional models of
meaning. In Proceedings of AAAI Spring Symposium on Quantum Interac-
tion. AAAI Press, 2007.

[7] B. Coecke. Kindergarten quantum mechanics — lecture notes. In A. Khren-
nikov, editor, Quantum Theory: Reconsiderations of the Foundations III,
pages 81–98. AIP Press, 2005. arXiv:quant-ph/0510032.

[8] B. Coecke. Introducing categories to the practicing physicist. In G. Sica, edi-
tor, What is category theory?, volume 30 of Advanced Studies in Mathematics
and Logic, pages 45–74. Polimetrica Publishing, 2006. arXiv:0808.1032.

31

[9] B. Coecke. Quantum picturalism. Contemporary physics, 51:59–83, 2010.
arXiv:0908.1787.

[10] B. Coecke and E. O. Paquette. Categories for the practicing physicist. In
B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages
167–271. Springer, 2010. arXiv:0905.3010.

[11] James R. Curran. From Distributional to Semantic Similarity. PhD thesis,
University of Edinburgh, 2004.

[12] G. Denhire and B. Lemaire. A computational model of children’s semantic
memory. In Proceedings of the 26th Annual Meeting of the Cognitive Science
Society, pages 297–302, Chicago, IL, 2004.

[13] D.R. Dowty, R.E. Wall, and S. Peters. Introduction to Montague Semantics.
Dordrecht, 1981.

[14] Peter W. Foltz, Walter Kintsch, and Thomas K. Landauer. The measure-
ment of textual coherence with latent semantic analysis. Discourse Process,
15:285–307, 1998.

[15] G. Gazdar. Paradigm merger in natural language processing. In R. Milner
and I. Wand, editors, Computing Tomorrow: Future Research Directions in
Computer Science, pages 88–109. Cambridge University Press, 1996.

[16] Gregory Grefenstette. Explorations in Automatic Thesaurus Discovery.
Kluwer Academic Publishers, 1994.

[17] Thomas L. Griffiths, Mark Steyvers, and Joshua B. Tenenbaum. Topics in
semantic representation. Psychological Review, 114(2):211–244, 2007.

[18] J. Lambek. The mathematics of sentence structure. American Mathematics
Monthly, 65, 1958.

[19] J. Lambek. Type grammar revisited. Logical Aspects of Computational Lin-
guistics, 1582, 1999.

[20] J. Lambek. Iterated galois connections in arithmetics and linguistics. Galois
Connections and Applications, Mathematics and its Applications, 565, 2004.

[21] J. Lambek. From Word to Sentence. Polimetrica, 2008.

[22] J. Lambek. Compact monoidal categories from linguistics to physics. In
B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages
451–469. Springer, 2010.

32

[23] J. Lambek and C. Casadio, editors. Computational algebraic approaches to
natural language. Polimetrica, Milan, 2006.

[24] T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: the la-
tent semantic analysis theory of acquisition, induction and representation of
knowledge. Psychological Review, 104(2):211–240, 1997.

[25] Michael D. Lee, Brandon Pincombe, and Matthew Welsh. An empirical eval-
uation of models of text document similarity. In B.G. Bara, L.W. Barsalou,
and M. Bucciarelli, editors, Proceedings of the 27th Annual Conference of the
Cognitive Science Society, pages 1254–1259, Mahwah, NJ, 2005. Erlbaum.

[26] Dekang Lin. Automatic retrieval and clustering of similar words. In Pro-
ceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguistics,
pages 768–774, 1998.

[27] K. Lund and C. Burgess. Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments & Comput-
ers, 28:203–208, 1996.

[28] Diana McCarthy, Rob Koeling, Julie Weeds, and John Carroll. Finding pre-
dominant senses in untagged text. In Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics (ACL-04), pages 280–287,
Barcelona, Spain, 2004.

[29] Scott McDonald. Environmental Determinants of Lexical Processing Effort.
PhD thesis, University of Edinburgh, 2000.

[30] A. Preller. Towards discourse representation via pregroup grammars. JoLLI,
2007.

[31] A. Preller and M. Sadrzadeh. Bell states and negative sentences in the dis-
tributed model of meaning. In P. Selinger B. Coecke, P. Panangaden, editor,
Electronic Notes in Theoretical Computer Science, Proceedings of the 6th
QPL Workshop on Quantum Physics and Logic. University of Oxford, 2010.

[32] M. Sadrzadeh. Pregroup analysis of Persian sentences. In C. Casadio and
J. Lambek, editors, Computational algebraic approaches to natural lan-
guage. Polimetrica, 2006.

[33] M. Sadrzadeh. High level quantum structures in linguistics and multi agent
systems. In J. van Rijsbergen P. Bruza, W. Lawless, editor, Proceedings of the
AAAI Spring Symposium on Quantum Interaction. Stanford University, 2007.

33

[34] J. R. Saffran, E. L. Newport, and R. N. Asling. Word segmentation: The role
of distributional cues. Journal of Memory and Language, 35:606–621, 1999.

[35] G Salton, A Wang, and C Yang. A vector-space model for information re-
trieval. Journal of the American Society for Information Science, 18:613–620,
1975.

[36] H. Schuetze. Automatic word sense discrimination. Computational Linguis-
tics, 24(1):97–123, 1998.

[37] P. Selinger. Dagger compact closed categories and completely positive maps.
Electronic Notes in Theoretical Computer Science, 170:139–163, 2007.

[38] P. Selinger. A survey of graphical languages for monoidal categories. In
B. Coecke, editor, New structures for physics, Lecture Notes in Physics, pages
275–337. Springer, 2010.

[39] P. Smolensky and G. Legendre. The Harmonic Mind: From Neural Computa-
tion to Optimality-Theoretic Grammar Vol. I: Cognitive Architecture Vol. II:
Linguistic and Philosophical Implications. MIT Press, 2005.

[40] D. P. Spence and K. C. Owens. Lexical co-occurrence and association
strength. Journal of Psycholinguistic Research, (19):317–330, 1990.

[41] D. Widdows. Orthogonal negation in vector spaces for modelling word-
meanings and document retrieval. In 41st Annual Meeting of the Association
for Computational Linguistics, Japan, 2003.

34

	1 Introduction
	2 Two `camps' within computational linguistics
	2.1 Vector space models of meaning
	2.2 Algebra of Pregroups as a type-categorial logic

	3 Modeling a language in a concrete category
	3.1 Monoidal categories
	3.2 The `from-meaning-of-words-to-meaning-of-a-sentence' process
	3.3 Compact closed categories
	3.4 Categories representing both grammar and meaning
	3.5 Meaning of a sentence as a morphism in FVect P.
	3.6 Comparison with the connectionist proposal

	4 Computing the meaning of example sentences
	4.1 Positive Transitive Sentence
	4.2 Negative Transitive Sentence

	5 Comparing meanings of sentences
	6 Relations vs Vectors for Montague-style semantics
	7 Future Work

